Copied to
clipboard

G = C24.18D10order 320 = 26·5

18th non-split extension by C24 of D10 acting via D10/C5=C22

metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: C24.18D10, (D4×C10)⋊26C4, (C2×D4)⋊6Dic5, (C2×Dic5)⋊18D4, C10.131(C4×D4), C2.18(D4×Dic5), (C22×D4).6D5, C232(C2×Dic5), C10.67C22≀C2, (C23×Dic5)⋊2C2, C22.120(D4×D5), C2.5(C23⋊D10), (C22×C10).109D4, (C22×C4).151D10, C23.43(C5⋊D4), C56(C23.23D4), C10.128(C4⋊D4), C221(C23.D5), C2.7(Dic5⋊D4), (C23×C10).46C22, C23.305(C22×D5), C10.10C4244C2, C22.61(D42D5), (C22×C10).365C23, (C22×C20).394C22, C22.51(C22×Dic5), C10.83(C22.D4), C2.5(C23.18D10), (C22×Dic5).219C22, (C2×C20)⋊35(C2×C4), (D4×C2×C10).11C2, (C2×C4)⋊3(C2×Dic5), (C2×C23.D5)⋊9C2, (C2×C10)⋊6(C22⋊C4), (C22×C10)⋊14(C2×C4), (C2×C10).377(C2×D4), C22.91(C2×C5⋊D4), C2.11(C2×C23.D5), C10.116(C2×C22⋊C4), (C2×C10).161(C4○D4), (C2×C10).297(C22×C4), SmallGroup(320,847)

Series: Derived Chief Lower central Upper central

C1C2×C10 — C24.18D10
C1C5C10C2×C10C22×C10C22×Dic5C23×Dic5 — C24.18D10
C5C2×C10 — C24.18D10
C1C23C22×D4

Generators and relations for C24.18D10
 G = < a,b,c,d,e,f | a2=b2=c2=d2=e10=1, f2=b, ab=ba, ac=ca, eae-1=ad=da, faf-1=acd, bc=cb, bd=db, be=eb, bf=fb, cd=dc, ce=ec, cf=fc, de=ed, df=fd, fef-1=e-1 >

Subgroups: 862 in 286 conjugacy classes, 91 normal (27 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, C10, C10, C10, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, Dic5, C20, C2×C10, C2×C10, C2×C10, C2.C42, C2×C22⋊C4, C23×C4, C22×D4, C2×Dic5, C2×Dic5, C2×C20, C2×C20, C5×D4, C22×C10, C22×C10, C22×C10, C23.23D4, C23.D5, C22×Dic5, C22×Dic5, C22×C20, D4×C10, D4×C10, C23×C10, C10.10C42, C2×C23.D5, C2×C23.D5, C23×Dic5, D4×C2×C10, C24.18D10
Quotients: C1, C2, C4, C22, C2×C4, D4, C23, D5, C22⋊C4, C22×C4, C2×D4, C4○D4, Dic5, D10, C2×C22⋊C4, C4×D4, C22≀C2, C4⋊D4, C22.D4, C2×Dic5, C5⋊D4, C22×D5, C23.23D4, C23.D5, D4×D5, D42D5, C22×Dic5, C2×C5⋊D4, D4×Dic5, C23.18D10, C23⋊D10, Dic5⋊D4, C2×C23.D5, C24.18D10

Smallest permutation representation of C24.18D10
On 160 points
Generators in S160
(2 64)(4 66)(6 68)(8 70)(10 62)(11 90)(13 82)(15 84)(17 86)(19 88)(21 72)(23 74)(25 76)(27 78)(29 80)(31 56)(33 58)(35 60)(37 52)(39 54)(41 104)(42 159)(43 106)(44 151)(45 108)(46 153)(47 110)(48 155)(49 102)(50 157)(91 133)(92 114)(93 135)(94 116)(95 137)(96 118)(97 139)(98 120)(99 131)(100 112)(101 128)(103 130)(105 122)(107 124)(109 126)(111 143)(113 145)(115 147)(117 149)(119 141)(121 158)(123 160)(125 152)(127 154)(129 156)(132 144)(134 146)(136 148)(138 150)(140 142)
(1 22)(2 23)(3 24)(4 25)(5 26)(6 27)(7 28)(8 29)(9 30)(10 21)(11 54)(12 55)(13 56)(14 57)(15 58)(16 59)(17 60)(18 51)(19 52)(20 53)(31 82)(32 83)(33 84)(34 85)(35 86)(36 87)(37 88)(38 89)(39 90)(40 81)(41 116)(42 117)(43 118)(44 119)(45 120)(46 111)(47 112)(48 113)(49 114)(50 115)(61 71)(62 72)(63 73)(64 74)(65 75)(66 76)(67 77)(68 78)(69 79)(70 80)(91 101)(92 102)(93 103)(94 104)(95 105)(96 106)(97 107)(98 108)(99 109)(100 110)(121 136)(122 137)(123 138)(124 139)(125 140)(126 131)(127 132)(128 133)(129 134)(130 135)(141 151)(142 152)(143 153)(144 154)(145 155)(146 156)(147 157)(148 158)(149 159)(150 160)
(1 55)(2 56)(3 57)(4 58)(5 59)(6 60)(7 51)(8 52)(9 53)(10 54)(11 21)(12 22)(13 23)(14 24)(15 25)(16 26)(17 27)(18 28)(19 29)(20 30)(31 64)(32 65)(33 66)(34 67)(35 68)(36 69)(37 70)(38 61)(39 62)(40 63)(41 158)(42 159)(43 160)(44 151)(45 152)(46 153)(47 154)(48 155)(49 156)(50 157)(71 89)(72 90)(73 81)(74 82)(75 83)(76 84)(77 85)(78 86)(79 87)(80 88)(91 133)(92 134)(93 135)(94 136)(95 137)(96 138)(97 139)(98 140)(99 131)(100 132)(101 128)(102 129)(103 130)(104 121)(105 122)(106 123)(107 124)(108 125)(109 126)(110 127)(111 143)(112 144)(113 145)(114 146)(115 147)(116 148)(117 149)(118 150)(119 141)(120 142)
(1 63)(2 64)(3 65)(4 66)(5 67)(6 68)(7 69)(8 70)(9 61)(10 62)(11 90)(12 81)(13 82)(14 83)(15 84)(16 85)(17 86)(18 87)(19 88)(20 89)(21 72)(22 73)(23 74)(24 75)(25 76)(26 77)(27 78)(28 79)(29 80)(30 71)(31 56)(32 57)(33 58)(34 59)(35 60)(36 51)(37 52)(38 53)(39 54)(40 55)(41 121)(42 122)(43 123)(44 124)(45 125)(46 126)(47 127)(48 128)(49 129)(50 130)(91 145)(92 146)(93 147)(94 148)(95 149)(96 150)(97 141)(98 142)(99 143)(100 144)(101 155)(102 156)(103 157)(104 158)(105 159)(106 160)(107 151)(108 152)(109 153)(110 154)(111 131)(112 132)(113 133)(114 134)(115 135)(116 136)(117 137)(118 138)(119 139)(120 140)
(1 2 3 4 5 6 7 8 9 10)(11 12 13 14 15 16 17 18 19 20)(21 22 23 24 25 26 27 28 29 30)(31 32 33 34 35 36 37 38 39 40)(41 42 43 44 45 46 47 48 49 50)(51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70)(71 72 73 74 75 76 77 78 79 80)(81 82 83 84 85 86 87 88 89 90)(91 92 93 94 95 96 97 98 99 100)(101 102 103 104 105 106 107 108 109 110)(111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130)(131 132 133 134 135 136 137 138 139 140)(141 142 143 144 145 146 147 148 149 150)(151 152 153 154 155 156 157 158 159 160)
(1 102 22 92)(2 101 23 91)(3 110 24 100)(4 109 25 99)(5 108 26 98)(6 107 27 97)(7 106 28 96)(8 105 29 95)(9 104 30 94)(10 103 21 93)(11 135 54 130)(12 134 55 129)(13 133 56 128)(14 132 57 127)(15 131 58 126)(16 140 59 125)(17 139 60 124)(18 138 51 123)(19 137 52 122)(20 136 53 121)(31 48 82 113)(32 47 83 112)(33 46 84 111)(34 45 85 120)(35 44 86 119)(36 43 87 118)(37 42 88 117)(38 41 89 116)(39 50 90 115)(40 49 81 114)(61 158 71 148)(62 157 72 147)(63 156 73 146)(64 155 74 145)(65 154 75 144)(66 153 76 143)(67 152 77 142)(68 151 78 141)(69 160 79 150)(70 159 80 149)

G:=sub<Sym(160)| (2,64)(4,66)(6,68)(8,70)(10,62)(11,90)(13,82)(15,84)(17,86)(19,88)(21,72)(23,74)(25,76)(27,78)(29,80)(31,56)(33,58)(35,60)(37,52)(39,54)(41,104)(42,159)(43,106)(44,151)(45,108)(46,153)(47,110)(48,155)(49,102)(50,157)(91,133)(92,114)(93,135)(94,116)(95,137)(96,118)(97,139)(98,120)(99,131)(100,112)(101,128)(103,130)(105,122)(107,124)(109,126)(111,143)(113,145)(115,147)(117,149)(119,141)(121,158)(123,160)(125,152)(127,154)(129,156)(132,144)(134,146)(136,148)(138,150)(140,142), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,21)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,81)(41,116)(42,117)(43,118)(44,119)(45,120)(46,111)(47,112)(48,113)(49,114)(50,115)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110)(121,136)(122,137)(123,138)(124,139)(125,140)(126,131)(127,132)(128,133)(129,134)(130,135)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,51)(8,52)(9,53)(10,54)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,158)(42,159)(43,160)(44,151)(45,152)(46,153)(47,154)(48,155)(49,156)(50,157)(71,89)(72,90)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,131)(100,132)(101,128)(102,129)(103,130)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,141)(120,142), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,90)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,71)(31,56)(32,57)(33,58)(34,59)(35,60)(36,51)(37,52)(38,53)(39,54)(40,55)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,141)(98,142)(99,143)(100,144)(101,155)(102,156)(103,157)(104,158)(105,159)(106,160)(107,151)(108,152)(109,153)(110,154)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,102,22,92)(2,101,23,91)(3,110,24,100)(4,109,25,99)(5,108,26,98)(6,107,27,97)(7,106,28,96)(8,105,29,95)(9,104,30,94)(10,103,21,93)(11,135,54,130)(12,134,55,129)(13,133,56,128)(14,132,57,127)(15,131,58,126)(16,140,59,125)(17,139,60,124)(18,138,51,123)(19,137,52,122)(20,136,53,121)(31,48,82,113)(32,47,83,112)(33,46,84,111)(34,45,85,120)(35,44,86,119)(36,43,87,118)(37,42,88,117)(38,41,89,116)(39,50,90,115)(40,49,81,114)(61,158,71,148)(62,157,72,147)(63,156,73,146)(64,155,74,145)(65,154,75,144)(66,153,76,143)(67,152,77,142)(68,151,78,141)(69,160,79,150)(70,159,80,149)>;

G:=Group( (2,64)(4,66)(6,68)(8,70)(10,62)(11,90)(13,82)(15,84)(17,86)(19,88)(21,72)(23,74)(25,76)(27,78)(29,80)(31,56)(33,58)(35,60)(37,52)(39,54)(41,104)(42,159)(43,106)(44,151)(45,108)(46,153)(47,110)(48,155)(49,102)(50,157)(91,133)(92,114)(93,135)(94,116)(95,137)(96,118)(97,139)(98,120)(99,131)(100,112)(101,128)(103,130)(105,122)(107,124)(109,126)(111,143)(113,145)(115,147)(117,149)(119,141)(121,158)(123,160)(125,152)(127,154)(129,156)(132,144)(134,146)(136,148)(138,150)(140,142), (1,22)(2,23)(3,24)(4,25)(5,26)(6,27)(7,28)(8,29)(9,30)(10,21)(11,54)(12,55)(13,56)(14,57)(15,58)(16,59)(17,60)(18,51)(19,52)(20,53)(31,82)(32,83)(33,84)(34,85)(35,86)(36,87)(37,88)(38,89)(39,90)(40,81)(41,116)(42,117)(43,118)(44,119)(45,120)(46,111)(47,112)(48,113)(49,114)(50,115)(61,71)(62,72)(63,73)(64,74)(65,75)(66,76)(67,77)(68,78)(69,79)(70,80)(91,101)(92,102)(93,103)(94,104)(95,105)(96,106)(97,107)(98,108)(99,109)(100,110)(121,136)(122,137)(123,138)(124,139)(125,140)(126,131)(127,132)(128,133)(129,134)(130,135)(141,151)(142,152)(143,153)(144,154)(145,155)(146,156)(147,157)(148,158)(149,159)(150,160), (1,55)(2,56)(3,57)(4,58)(5,59)(6,60)(7,51)(8,52)(9,53)(10,54)(11,21)(12,22)(13,23)(14,24)(15,25)(16,26)(17,27)(18,28)(19,29)(20,30)(31,64)(32,65)(33,66)(34,67)(35,68)(36,69)(37,70)(38,61)(39,62)(40,63)(41,158)(42,159)(43,160)(44,151)(45,152)(46,153)(47,154)(48,155)(49,156)(50,157)(71,89)(72,90)(73,81)(74,82)(75,83)(76,84)(77,85)(78,86)(79,87)(80,88)(91,133)(92,134)(93,135)(94,136)(95,137)(96,138)(97,139)(98,140)(99,131)(100,132)(101,128)(102,129)(103,130)(104,121)(105,122)(106,123)(107,124)(108,125)(109,126)(110,127)(111,143)(112,144)(113,145)(114,146)(115,147)(116,148)(117,149)(118,150)(119,141)(120,142), (1,63)(2,64)(3,65)(4,66)(5,67)(6,68)(7,69)(8,70)(9,61)(10,62)(11,90)(12,81)(13,82)(14,83)(15,84)(16,85)(17,86)(18,87)(19,88)(20,89)(21,72)(22,73)(23,74)(24,75)(25,76)(26,77)(27,78)(28,79)(29,80)(30,71)(31,56)(32,57)(33,58)(34,59)(35,60)(36,51)(37,52)(38,53)(39,54)(40,55)(41,121)(42,122)(43,123)(44,124)(45,125)(46,126)(47,127)(48,128)(49,129)(50,130)(91,145)(92,146)(93,147)(94,148)(95,149)(96,150)(97,141)(98,142)(99,143)(100,144)(101,155)(102,156)(103,157)(104,158)(105,159)(106,160)(107,151)(108,152)(109,153)(110,154)(111,131)(112,132)(113,133)(114,134)(115,135)(116,136)(117,137)(118,138)(119,139)(120,140), (1,2,3,4,5,6,7,8,9,10)(11,12,13,14,15,16,17,18,19,20)(21,22,23,24,25,26,27,28,29,30)(31,32,33,34,35,36,37,38,39,40)(41,42,43,44,45,46,47,48,49,50)(51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70)(71,72,73,74,75,76,77,78,79,80)(81,82,83,84,85,86,87,88,89,90)(91,92,93,94,95,96,97,98,99,100)(101,102,103,104,105,106,107,108,109,110)(111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130)(131,132,133,134,135,136,137,138,139,140)(141,142,143,144,145,146,147,148,149,150)(151,152,153,154,155,156,157,158,159,160), (1,102,22,92)(2,101,23,91)(3,110,24,100)(4,109,25,99)(5,108,26,98)(6,107,27,97)(7,106,28,96)(8,105,29,95)(9,104,30,94)(10,103,21,93)(11,135,54,130)(12,134,55,129)(13,133,56,128)(14,132,57,127)(15,131,58,126)(16,140,59,125)(17,139,60,124)(18,138,51,123)(19,137,52,122)(20,136,53,121)(31,48,82,113)(32,47,83,112)(33,46,84,111)(34,45,85,120)(35,44,86,119)(36,43,87,118)(37,42,88,117)(38,41,89,116)(39,50,90,115)(40,49,81,114)(61,158,71,148)(62,157,72,147)(63,156,73,146)(64,155,74,145)(65,154,75,144)(66,153,76,143)(67,152,77,142)(68,151,78,141)(69,160,79,150)(70,159,80,149) );

G=PermutationGroup([[(2,64),(4,66),(6,68),(8,70),(10,62),(11,90),(13,82),(15,84),(17,86),(19,88),(21,72),(23,74),(25,76),(27,78),(29,80),(31,56),(33,58),(35,60),(37,52),(39,54),(41,104),(42,159),(43,106),(44,151),(45,108),(46,153),(47,110),(48,155),(49,102),(50,157),(91,133),(92,114),(93,135),(94,116),(95,137),(96,118),(97,139),(98,120),(99,131),(100,112),(101,128),(103,130),(105,122),(107,124),(109,126),(111,143),(113,145),(115,147),(117,149),(119,141),(121,158),(123,160),(125,152),(127,154),(129,156),(132,144),(134,146),(136,148),(138,150),(140,142)], [(1,22),(2,23),(3,24),(4,25),(5,26),(6,27),(7,28),(8,29),(9,30),(10,21),(11,54),(12,55),(13,56),(14,57),(15,58),(16,59),(17,60),(18,51),(19,52),(20,53),(31,82),(32,83),(33,84),(34,85),(35,86),(36,87),(37,88),(38,89),(39,90),(40,81),(41,116),(42,117),(43,118),(44,119),(45,120),(46,111),(47,112),(48,113),(49,114),(50,115),(61,71),(62,72),(63,73),(64,74),(65,75),(66,76),(67,77),(68,78),(69,79),(70,80),(91,101),(92,102),(93,103),(94,104),(95,105),(96,106),(97,107),(98,108),(99,109),(100,110),(121,136),(122,137),(123,138),(124,139),(125,140),(126,131),(127,132),(128,133),(129,134),(130,135),(141,151),(142,152),(143,153),(144,154),(145,155),(146,156),(147,157),(148,158),(149,159),(150,160)], [(1,55),(2,56),(3,57),(4,58),(5,59),(6,60),(7,51),(8,52),(9,53),(10,54),(11,21),(12,22),(13,23),(14,24),(15,25),(16,26),(17,27),(18,28),(19,29),(20,30),(31,64),(32,65),(33,66),(34,67),(35,68),(36,69),(37,70),(38,61),(39,62),(40,63),(41,158),(42,159),(43,160),(44,151),(45,152),(46,153),(47,154),(48,155),(49,156),(50,157),(71,89),(72,90),(73,81),(74,82),(75,83),(76,84),(77,85),(78,86),(79,87),(80,88),(91,133),(92,134),(93,135),(94,136),(95,137),(96,138),(97,139),(98,140),(99,131),(100,132),(101,128),(102,129),(103,130),(104,121),(105,122),(106,123),(107,124),(108,125),(109,126),(110,127),(111,143),(112,144),(113,145),(114,146),(115,147),(116,148),(117,149),(118,150),(119,141),(120,142)], [(1,63),(2,64),(3,65),(4,66),(5,67),(6,68),(7,69),(8,70),(9,61),(10,62),(11,90),(12,81),(13,82),(14,83),(15,84),(16,85),(17,86),(18,87),(19,88),(20,89),(21,72),(22,73),(23,74),(24,75),(25,76),(26,77),(27,78),(28,79),(29,80),(30,71),(31,56),(32,57),(33,58),(34,59),(35,60),(36,51),(37,52),(38,53),(39,54),(40,55),(41,121),(42,122),(43,123),(44,124),(45,125),(46,126),(47,127),(48,128),(49,129),(50,130),(91,145),(92,146),(93,147),(94,148),(95,149),(96,150),(97,141),(98,142),(99,143),(100,144),(101,155),(102,156),(103,157),(104,158),(105,159),(106,160),(107,151),(108,152),(109,153),(110,154),(111,131),(112,132),(113,133),(114,134),(115,135),(116,136),(117,137),(118,138),(119,139),(120,140)], [(1,2,3,4,5,6,7,8,9,10),(11,12,13,14,15,16,17,18,19,20),(21,22,23,24,25,26,27,28,29,30),(31,32,33,34,35,36,37,38,39,40),(41,42,43,44,45,46,47,48,49,50),(51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70),(71,72,73,74,75,76,77,78,79,80),(81,82,83,84,85,86,87,88,89,90),(91,92,93,94,95,96,97,98,99,100),(101,102,103,104,105,106,107,108,109,110),(111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130),(131,132,133,134,135,136,137,138,139,140),(141,142,143,144,145,146,147,148,149,150),(151,152,153,154,155,156,157,158,159,160)], [(1,102,22,92),(2,101,23,91),(3,110,24,100),(4,109,25,99),(5,108,26,98),(6,107,27,97),(7,106,28,96),(8,105,29,95),(9,104,30,94),(10,103,21,93),(11,135,54,130),(12,134,55,129),(13,133,56,128),(14,132,57,127),(15,131,58,126),(16,140,59,125),(17,139,60,124),(18,138,51,123),(19,137,52,122),(20,136,53,121),(31,48,82,113),(32,47,83,112),(33,46,84,111),(34,45,85,120),(35,44,86,119),(36,43,87,118),(37,42,88,117),(38,41,89,116),(39,50,90,115),(40,49,81,114),(61,158,71,148),(62,157,72,147),(63,156,73,146),(64,155,74,145),(65,154,75,144),(66,153,76,143),(67,152,77,142),(68,151,78,141),(69,160,79,150),(70,159,80,149)]])

68 conjugacy classes

class 1 2A···2G2H2I2J2K2L2M4A4B4C···4J4K4L4M4N5A5B10A···10N10O···10AD20A···20H
order12···2222222444···444445510···1010···1020···20
size11···12222444410···1020202020222···24···44···4

68 irreducible representations

dim1111112222222244
type+++++++++-++-
imageC1C2C2C2C2C4D4D4D5C4○D4D10Dic5D10C5⋊D4D4×D5D42D5
kernelC24.18D10C10.10C42C2×C23.D5C23×Dic5D4×C2×C10D4×C10C2×Dic5C22×C10C22×D4C2×C10C22×C4C2×D4C24C23C22C22
# reps12311844242841644

Matrix representation of C24.18D10 in GL5(𝔽41)

400000
01000
004000
00010
0003340
,
400000
01000
00100
000400
000040
,
10000
040000
004000
000400
000040
,
10000
040000
004000
00010
00001
,
400000
00100
01000
00040
0002631
,
90000
01000
00100
000221
0003139

G:=sub<GL(5,GF(41))| [40,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,1,33,0,0,0,0,40],[40,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,40],[1,0,0,0,0,0,40,0,0,0,0,0,40,0,0,0,0,0,1,0,0,0,0,0,1],[40,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,4,26,0,0,0,0,31],[9,0,0,0,0,0,1,0,0,0,0,0,1,0,0,0,0,0,2,31,0,0,0,21,39] >;

C24.18D10 in GAP, Magma, Sage, TeX

C_2^4._{18}D_{10}
% in TeX

G:=Group("C2^4.18D10");
// GroupNames label

G:=SmallGroup(320,847);
// by ID

G=gap.SmallGroup(320,847);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,56,422,387,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^10=1,f^2=b,a*b=b*a,a*c=c*a,e*a*e^-1=a*d=d*a,f*a*f^-1=a*c*d,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,c*d=d*c,c*e=e*c,c*f=f*c,d*e=e*d,d*f=f*d,f*e*f^-1=e^-1>;
// generators/relations

׿
×
𝔽